
Robo-hummer re-installer

Zachariah J. DeCook, Micah Y. Ng

Vision and Overview

This senior design project aimed to write a program that searches for songs on
Hymnary.org by a user’s audio rendition of the melody (especially via humming).
This project hoped to be an alternative to the existing melody search.

We planned to solve this by designing a system to recognize tunes based on
individual rhythms and notes. In order to do so, we attempted to train a Neural
Net to analyze audio signals for these rhythms/notes. We came up with a search
algorithm to match the analyzed audio to actual song definitions. This software
was cleaned up so that it is a somewhat usable product.

Research Review

Searching using the on-screen keyboard on hymnary.org is quite cumbersome.
Various companies already produce software capable of recognizing songs from
their actual recordings, however they necessitate a high degree of similarity;
the audio fragment must essentially be from the same recording for their audio
fingerprinting techniques to work.

We researched audio analysis libraries, and found Marsyas to be a good first step
for getting quantitative feature data from audio files.

We decided to use Tensorflow to train our neural network.

Design

We designed a pipeline to bring audio from a web interface through our machine
learning, and into the k-nearest neighbors search.

We collected audio samples to train the neural network.

In testing this, we discovered it to be unreliable, so we created a keyboard
interface to make sure the searching works properly.

Our search algorithm takes in the music XML corpus and divides it up into a
shifting window of the context length (we selected 4 notes). Each segment is
converted to a feature vector comprised of the pitches and lengths of each note
relative to the first note in the segment. The relative format allows us to ignore
differences in key and tempo.

1

https://hymnary.org/melody/search


Example

Figure 1: Full phrase.

Figure 2: Segments.

Table 1: Relative values of the first segment.

MIDI Length
72 500

-1 (71) 0.75 (375)
-3 (69) 0.25 (125)
-5 (67) 1.5 (750)

Resulting feature vector: < -1, 0.75, -3, 0.25, -5, 1.5 >

2



The feature vectors are stored in an index for k-nearest neighbor queries. We
selected the the HNSW approximate k-NN algorithm for its superior performance
and accuracy.

At search time, the input music phrase is similarly divided into feature vectors.
These vectors are run through k-NN. The resulting points are grouped by which
song they are from, with the frequency becoming the match score.

Results

Our initial neural networks for predicting notes from audio data supported
excessive learning capabilities. This resulted in the networks learning the exact
training files. When fed new data, prediction performance was abysmal, often
ranging +/- 1 octave.

Figure 3: Over-training.

To improve the model, we reduced the size of the neural network while increasing
the number of input features. The prediction range narrowed to approximately
+/- 3 tones. A significant improvement, but insufficient accuracy to make search
via humming practical.

Our alternate method of predicting notes was based on the YIN algorithm.
Although this algorithm is commonly used in tuners, we were unable to get
useful results from it for hummed input. (Input from musical instruments tended
to be highly accurate, but was outside of the scope of our project.) Pitch
detection algorithms may warrant further investigation.

3



Figure 4: Smaller network.

The second component of our system, search, yielded more successful results.
Even with mild inaccuracies in pitch and timing, our nearest-neighbor based
scoring algorithm generally ranked the correct tune as the top, or close to the
top result. Incorporating note length (in addition to just pitch) enabled our
relatively short context length of four notes to remain a useful distinguishing
factor.

However, the search was designed with audio input in mind. While humming,
getting note length correct is easier than with our fallback keyboard input. As
such, we may be able to provide more stable results by placing a lesser weight
on the note length components of the score. Also, our search algorithm has
increased difficulty in handling insertion and deletion mistakes. It requires
sufficient input to take search contexts from around, but not including, this
type of error. To make search more tolerant, we could include in both our index
and search contexts, all combinations of single-deletion mistakes. This requires
evaluation to prevent accurate searches from degrading.

Conclusions

Neither the YIN algorithm nor the neural network based approaches worked
well for vocal input, so, we removed the humming-based search page in favor of
the keyboard interface for getting notes. Searches come back with great results.
Since the search index data came from Hymnary.org, each search will return a
link to the relevant hymn instance on Hymnary.org.

4



Future Work

The neural net could be trained more to recognize humming.

We could experiment with LSTM - Long Short-Term Memory neural networks.

The new search with the keyboard interface could possibly be used as a replace-
ment for the old Hymnary melodic search feature. More improvements to the
interface - such as editing the sample, may be wanted. Ability to import music
from MIDI files is a critical feature for this to be used as a replacement for the
former melody search.

The audio analyzer is implemented as a REST endpoint. However, the search
script must reinitialize indicies on each run, adding inefficiency. Converting to
also be a micro server (ideally via AIOHTTP) could improve performance.

Further exploration of pitch detection algorithms could provide a viable replace-
ment for neural network based note recognition. Our experiments with YIN
(and related techniques) were minimal, and so could see improvements.

Acknowledgements

We acknowledge Dr. W. Harry Plantinga, for provision of MusicXML files for
the search index, as well as a script to assist in importing data from these.

Will Groenendyk, for helping to set up LDAP logins on the system a few of the
times that we re-installed the system.

Nathanael Dick, for starting work on the project, and giving motivation and
encouragement for the work being done.

References

For our project, we used Marsyas and Tensorflow for the audio analysis section.

For the search backend, we used NMSLib, the Non-Metric Space Library, as well
as a few scripts to parse musicXML into a simpler format for searching.

The web framework used for the site was laravel.

For the keyboard frontend, we used MIDI.js for audio feedback and VexFlow for
visual musical notation feedback.

Appendices

• robo-hummer on Github

5

https://github.com/aio-libs/aiohttp
https://github.com/alpha0010/robo-hummer

	Robo-hummer re-installer
	Zachariah J. DeCook, Micah Y. Ng
	Vision and Overview
	Research Review
	Design
	Example

	Results
	Conclusions
	Future Work
	Acknowledgements
	References
	Appendices


